Quantum spectra of triangular billiards on the sphere

نویسندگان

  • M. E. Spina
  • M. Saraceno
چکیده

We study the quantal energy spectrum of triangular billiards on a spherical surface. Group theory yields analytical results for tiling billiards while the generic case is treated numerically. We find that the statistical properties of the spectra do not follow the standard random matrix results and their peculiar behaviour can be related to the corresponding classical phase space structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Rate of Quantum Ergodicity on hyperbolic Surfaces and Billiards

The rate of quantum ergodicity is studied for three strongly chaotic (Anosov) systems. The quantal eigenfunctions on a compact Riemannian surface of genus g = 2 and of two triangular billiards on a surface of constant negative curvature are investigated. One of the triangular billiards belongs to the class of arithmetic systems. There are no peculiarities observed in the arithmetic system conce...

متن کامل

شناسایی ترازهای آشوبی بیلیارد استادیوم برحسب شعاع گردش

  Nowadays study of chaotic quantum billiards because of their relation to Nano technology. In this paper distribution of zeros of wave function on the boundary of two circular and stadium billiards are investigated. By calculating gyration radius for these points chaotic and non-chaotic states are distinguished.

متن کامل

Transitions to quantum chaos in a generic one-parameter family of billiards

Generic one-parameter billiards are studied both classically and quantally. The classical dynamics for the billiards makes a transition from regular to fully chaotic motion through intermediary soft chaotic system. The energy spectra of the billiards are computed using finite element method which has not been applied to the euclidean billiard. True generic quantum chaotic transitional behavior ...

متن کامل

Billiards on Constant Curvature Spaces and Generating Functions for Systems with Constraints

In this note we consider a method of generating functions for systems with constraints and, as an example, we prove that the billiard mappings for billiards on the Euclidean space, sphere, and the Lobachevsky space are sympletic. Further, by taking a quadratic generating function we get the skew-hodograph mapping introduced by Moser and Veselov, which relates the ellipsoidal billiards in the Eu...

متن کامل

Wave Dynamical Chaos in Superconducting Microwave Billiards

During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense “wave dynamical” point of view [1–3]. Due to the equivalence between the stationary Schrödinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate “quantum chaos” with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000